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1. INTRODUCTION.

Since the direct solution of systems of linear equations
by elimination is now well understood when the matrix is full
or band, attention has turned to the probiem ¢f elimination
of systems when the matrix is arbitrarily sparse. When the
sparse matrix arises from the discretization of an elliptic
partial differential equation, it has a special gtructure and
speci.al properties which make iterative methods attractive.
Even here, however, one zan often find an ordering of the
equations which makes elimination competitive (George{3]}).
But. all toc rrequently the matrix has an arbitrarily sparse
structure, e.g. in network analysis and econometric problems.

Here we present an error analysis of (point) Gaussian
elimination when the matrix is arbitrarily sparse. The anal-
ysis is presented in terms of the structure of the elimina-
tion graphs arising in the elimination process. The only
assumption we make is that the leadina principal minors are
non-zexro, i.e. that the (1,1) entry in each reduced matrix
is non-zero (cf. Forsythe and Moler [2], pp. 27-36).

Since the graphs of band and full matrices are special
elimination graphs, the error analyses for band and full

matrices follow as special cases.




2, MATRICES AND GKAPHS.

Let M be an nxn matrix with non-zero leading principal
minors; hence M is non-singular and the LU decomposition of
M exists and is unique. If M is symmetric, then M=oLt.

Rose [4] associated an undirected graph with a sym-
metric matrix and interpreted the woLt factorization graph-
theoretically by undirected elimination graphs. Bunch and
Rose [1] made the extension of the association of directed
graphs with general square matrices and of the interpreta-

tion of the LU factorization by directed elimination graphs.

The directed graph of M, G{M)={X,@&), with verlex set

X and arc set @&,is defined as follows: a vertex xiex is
associated with row i of M, and (xi,xj)ecz(an arc from Xq
to xj is in G) if and only if mij#O and i#j. The vertices

X are recarded as ordered; i.e., X={xi}n=1.

a rt

Let the matrix M be written as M= , where a
c B

is 1x1l, r and ¢ are (n-1)x1 and B is (n-1)*(n-1). Then
the first step of the LU factorization of M can be written

as

10 a et

c/a I 0 B-crt/a
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If G(M) is the directed graph of M, the elimination

graph Gy is obtained from G by deleting y together with
its incident arcs and adding an arc (x,z) whenever there
exists a (directed) x, z path of length 2 containing y.
Gy is the graph of the matrix obtained bty "eliminating"
the variable corresponding to y in Gaussian elimination;
e.gd., Gx is the graph of B-crt/a. The accidental cre-
ation of zeros Juring the elimination process is ignored.
For a2 more detziled discussion, see Bunch and Rose (1],
Section 2.

Let G;....,G,_; be the sequence of elimination
graphs defined recursively by GO=G(M) and Giz(Gi_l)xi.
Let |} be the number of elements in the set &, Let

]"i=| {Yexi_l‘-’ (Xi rY) Eai__l 'Gi“l::(xi"l Iai_l) }I and

c;=l {yeX; _j:ly,x)ea; 1,65 1=(X; ;. 1)} Do the out-
degree and in-degree, respectively, of vertex X; in the
elimination graph G, _,.

Note that ri+l, °i+1 is the number of non-zero ele-
ments in the first row, column of the reduced matrix of
order n-i+l, i.e. the reduced matrix whose graph is Gyqe

Define eik=l if there is an arc from Xy to Xy and

e, ;=1 if there is an arc from x, to x; in G;_;. Other-

wise, let e.k=0 and eki=°' We count a division as a mul-

i
tiplication and a subtraction as an addition.

4 A MRS
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When M is symmetric, then ri=cisdi, and Rose [4] has
n-1
shown that the factorization M=LDLt requires I di(di+3)/2
n-1 i=1
multiplications and & di(di+4)/2 additions, while the

i=1 n-1

backsolving of 0L x=b requires n+2 I 4, multiplications
i=1 *
n-1
and ¢ I di additions.
i=l

When M is general, Bunch and Rose [1] have shown

that the M=LU factorization requires

n-1
Z (r.,+l)c, multiplications and
i=2 *

n-1
¥ r.c, additions, while the
jup 11

backsolving LUx=b requires

n-1
n+ I (r.+ri) multiplications and
i=1 *

n-1
T (ri+ci) additions.
i=y

Examples: Let M be an nxn matrix.

(1) If M is symmetric and full, then di=n-i and solving

n-1
Mx=LDth=b requires n+ L di(ai+7)/2= %n3 + %nz
i=1
. n-1 T13. 2 7 L
tions and Y 4,(4.+5)/2 = gn + n° - €D additions.

j=1 + 1

"
- §n multiplica-




(2) If M is symmetric and band, with bandwidth 2m+1,
then d.=m for 1<i<n-m and d;=n-i for n-m+l<i<n-l. Solving
Mx=LDth=b requires (%m2 + %m + 1)n - %m3 - 2m2 - %m mul-

tiplications and (%—m2 + gm)n - %m3 - %mz - %m additions.

(3) If M is general and full, then ri=n-i=ci and

n-l 13, 2 1
solving Mx=LUx=b requires n+ I (rici+2ci+ri)= 3n + n° - 30
s . - _ 13,12 _ 5 <L
multiplications and i:l(rici+ci+ri) = 3n° + 5n gn additions.

(4) If M is general and band, with bandwidth 2m+1, then

r;=m=c; for l<i<n-m and r;=n-i=c; for n-m+l<i<n-1 when no

pivoting is needed, while c,=m for 1l<i<n-m, ci=n-i for
n-m+l<i<n-1, r,<2m for 1<i<n-2m, r;<n-i for n-2m+l<izn-1,
when partial pivoting is used. Solving Mx=LUx=b requires
(m2+3m+l)n - %m3 - Zmz - %m multiplications and

(m2+2m)n - %m3 - %mz - %m additions when no pivoting is

needed, and 5(2m2+4m+l)n - %§m3 - a? - %lm multiplications

and 5(2m2+3m)n - %émB - %mz - %m additions when partial

pivoting is used.

PRSP




3. ERROR ANALYSIS OF TRIANGULAR FACTORIZATION.

n
Let |[x]|_ = max |x|, |[M]|_ = max I |m, .|
A l<i<n T ® " 1<i<n j=1 13
TR ATAIIE] EAEW :
X = XX M = max I |m,./. If M=M~, then
g 17 1<i<n im0 13 '

i ] =,

Due to the finite precision arithmetic, we obtain the
triangular factorization of a perturbation of M, i.e. LU=M+F,
Let M(l)sM. Then the elimination is defined sequential-

(k)

ly for 1<k<n-1 by the following: given M , let L(k) be de-

fined by 28 =1 for 1<ien, 2K =se(m{X) /m{¥)) for x+1cicn,

zé?’:o otherwise, then MUV zgp ((n®)y"Iyk)y 5 o, piktb g

ij
fO ' for k+1<i<n, j=k
ﬁ fZ(még)-zét)xmgg)) for k+1<i, j<n
kmég) otherwise.

Then U=M‘™ and L=L(1)L(2)"'L(n—l), i.e.

0 for i<j
Il- . = 1 for i=j [

i3 for i>j
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Following the notation of Forsythe and Moler (2}, §21,
ict u be the unit round-off, e.g., u= %Bl-t for rounded

operations in t digit, base 8 arithmctic. Then

080 ¥ /mE)y (148, 0,01, where |8, ] <u, or

lk i

(k) ._ (k)

(k) z(k) (k) (k) vhere €5k My 6ikeik for

0 = myp =05 Mk *Eix

k+l<i<n, and for k+l<i, j<n:

(k+l) (L) (k) (k)
13 = (m 11 zlk (116,

)Y/ (148 Y,

ij €ik® k3 ij €ik® kj
|} o e .
where 831=0, | 8;;]<u for 2<izn, |Sij|§p for 1<i, j<n, or

kD) ) (k) (R ()

13 ij ik L] ig !
(k) __, (k) (k) (L+J) (k)_
where elj 21? k3j 613 1k kj 13 613 1k kj* Let €ij 0
otherwise,

Let Il(k)|<1 for all i, k and Im(§)|<c for all i,j,k.
Then le(k)|<oue ik for k+l<i<n and |e(k)|<(1+1)ouelk °x;3 for

I

k+1<i, j<n.

et 78 oK+ _y (KD Dy (K) g0 1cken-1;
i-1
u(1+l)c L e,, e, . for i<j
then F= I F(k) and |1l < k=1 K KJ
k=1 j-1 .
u(T+1)°k£leikekj+u°eij for i>j

LLS B O,
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N ll i-1 i-1 j-1 n i~1
Thus F <ug max I e,.+(1t+1)] I L e..e, .+ T L e.,e, .
’ == 1ci<n)j=1 3 j=1 k=1 K KI 455 x=1 1KKJ
F]] n i~1 n j~-1
and F <ug max L e,.+(t+1)] ¥ L e,,e, .+ I % e..e, .l \.
=" e i=j41 I 1=2 kel 2K KT jogig ke PROKI

-

1f M=M® and LDLY=M+F, then F=r%, e;5=e,; for all 1,3,
i-1 5-1

oy 3y 3
lFiilip(T+l)ok£leik, lFijl5P‘T+*)°kileikejk+u°eij for i>j,

i-1
|Fijlfp(1+l)okileikejk+uoeij for i<j, and ||F|| =[] F[] =
n e n i-1 §-1 i-1
max I |F,.|<vo max | I e,.+(1+l)} I T e,,e.,+ L e+
I<i<n 3=1 9 7 1ci<n{g=1 j=1 k=1 1k 5K oy ik
3L
’ n i-l
X L e, €., .
j=i+l k=1 1K 3K
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4. ERROR ANALYSIS OF BACKSOLVING.

Solving Ly=b, where L is unit lower triangular, we ob-
tain the exact solution of (L+é8L)y=b. Here yl—b1 and

-i"( - . +b, )—

i¥y” 12y2 *i,i-1Yi-1

Ry QU485 9)yymee=fyrg g (1485 5 )Y y+b;)/(148;,) , where

i-1
8§,7=0, | 8;;]<u for 2<i<n, |611|§1.01u(1+k£2ek1)eil for 2<i<n,
i-1
IC |<1 0lu(l+ I ey.)e;. for 2<j<i<n. Then
k=j+1 <3 J
[]60]|<1.02u max| e, .| max { Z | 6:4]3<
1= i3 Y 1cien d=g

1 1 .
l.OluTmax{fcl(cl+l), max lic.(cj+1)+1]} since

2<j<n-1
i-1
2 |5 l|<1 0lu E (1+ I ekl)e 1.01ucl(cl+l)/2 and
i=2 k=2
T (8.4l 1+ 1 (+ I } Lo, (1) +1]
§..1<1.0lu {1+ ¥ (1+ I e, .)e..} =1l.0lu[5c.(c.+l)+l
i=g 23 i=j+1  k=j+l K3 33 273773
i-1
for 2<j<n-1, while |[8L|] <1.0lut max {e;,+ I e ey
l<1<n k=2
i-1 i-1 “n-1 n-1
+ % (1+ T k )e +l}<l OluT{l+cl—l+ T c.+1}=1.0lut(l+ I cj)
j=2  k=j+1 K3 ED T j=2 3 3=1

Solving Ux=y, where U is upper triangular, we obtain

the exact solution of (U+ &) x=y. Here xnrfl(yn/unn)—

- x
i,i+l 1+1 uln n y

Yis

=~Q.

Y,/ (o, (1+ 8 )] and x;=£%

L TARV IS SRSy s G e
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‘ " i (165 51V Xy 7Ty (A4S, x4+

= for 2<i<n,
U4 (1+<Sii) (1+Gii)

!o= 1.)<u <i<n- La] < <i<
where §' =0, |&}.|<u for 1<icn-1, |8;;]<u for 1<izn,

n-l
6, |<1.0lu(l+ £ e, )e, for 1l<i<n-1, and
in keitl kn’ “in ——

j-1
laijl§1.01u(2+ I epyley

34 for 1l<i<j<n-1l. Then
' k=i+1 J

|| 80} | <max|u, .| max {|&L.[+ g 16,511 <
Ti,j M ician I i=1 I

j-1 j=1 n-1l n-1
1.0luomax{ max [2+ T (2+ I e, .)e,.], 1+ I (1+ I e, Ve._ )},
1<ien=1 i=1  ke=i+l K33 Tiny T pafyq k0 in

n
while ||8U]| <max|u, .| max {]6!.|+ I |6,.]} <
IETE R LR Bl

n-1 j=1 n-i
1.01ug max {2+. Io(2+ I ekj)eij+(l+k=§+le

e, } <
l<ien-1  d=i+l k=il kn”"in

1l
1.01u01<?iz~1{2+2ri 2ein+5ri(ri 1)+ein} <

1.0lvo max {2+%ri(ri+3)}.
liiin-l

When M=Mt, U=DLt, ri=ciEdi and we obtain (D+4D)z=y and

(Lt+ALt)x=z. Here zi=f2(yi/dii)=yi/[dii(1+6ii)] where IGiiliu
for 1<i<n, so ||ép]],=||éD]] <u max| d, ;| =up, where p=max|d,.].
i :

i ii,
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|} an%]| ;<1.01ut max{ max
1<j<n-1

and |lALt||w§1.01ut max {l+ldi(di+l)}.

l1ci<n-1 2

j-1

1+ 2 (1+ T e

i=1

j=-1

=i+l

n-1 n-1l
J, I I e,.e;
k3'' 421 keie XD

}

P e x

e
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5. ERROR ANALYSIS OF ELIMINATION.

Solving Mx=b in finite precision, we obtain the exact
solution of (M+8M)x=b, where §M=F+(SL)U+L(8U)+(SL) (8U), or

when M=M®, 6M=F+LD(ALY)+[L(6D)+(8L) D+ (sL) (D) ] [LE+art).

i~1
||L'|l§1+T max c., [|L||m£1+1 max Ze,.<l+(n-1)T,
l<j<n-1 3 2<i<n j=1
n
[1v]},<0(1+ max I e,.)<no, ||U]| _<o(l+ max r.)
T adan- gm0 = igean-1 3

t t
e =zl oo HL =2l ]y, and |10l =] ]D]] .20.
1 1 1

1<3<n i ij

n
Thus, in general, IlGM[Ilgl.Oluo{.max { I e,.+
i=j+1

[ j i-1 n  j-1
(1+1) b} I e,.e .+ L I e.,cC :]}
i=2 k=1 K3 jog4 ko1 IKKT

n
+T max [1+%c.(c.+l)][l+ max T ei.]
1<j<n-1 3] 1<i<n-1 j=i+1 *J

j-1 i-1
+rax {' max [2+ L (2+ I ekj)e..],

l<i<n-1 di=l k=il +

n-1 n-1
I+ 2 (1+ I e )e.} 1+t max c,
=1 k=i+] KRIn ( 1<j<n-1 J

1

+1.0lut max [l+2cj(cj+l)])} . |18M|_ can be bounded

1<j<n-1

similarly. Similar bounds are obtainable when M=Mt.
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6. THE BAND AND FULL CASES.

15~0

for |i-j|>m; under Gaussian elimination with partial pivoting,

When M is a band matrix with bandwidth 2m+l, then e

eij=° for i>j+m and for i<j+2m.

With no pivoting, ||F||m§ou[m+(1+1)m2], ||| <1+mr,

|1 65} ] <1.01ut Gm%+2mt1], || ]| <(m+1)o, and || s0]] <
1.01ug [Jn’+3me2);  thus || 6M] | <1.01luo{tm 3 (5T+3)n

%(7T+5)+T+2+1.01uT(%m4+m3+%m2+%m+2)}.

If M is diagonally dominant, then t<l, 0<2, and || éM||_<

2+12m+4+1.01u(%m4+2m3+2m2+5m+4)}.

1.01u{2m3+8m 5

With partial pivoting, =1, oizzm-l-(m~1)2m-2 (Wilkinson([5}),
|1¥1] <uotsneam), J1E]| <dme,| | 6L] | <1.0luldn®eame1l, [lU]], <

(2m+1) o, and I|6U||wil.01uo[2m2+3m+2]; thus || oM | <

l.01u0{3m3+g%m2+2%m+3+1.01u(m4+%m3+%m2+4m+2)}-

When M is full, ej4=1 for all i,j. Thus ||F||_ <

Lol (t+1) n-1+1], o] <1+ (n-1)7,

uo{p-1+(1+1) (zn°~3n) }=3

|lul] <no, |]68L]| _<1.0lutin(n-1)/2+1], |} 6u]| _<1.0luon(n+l)/2,

2

and |IGM[|mﬁl.Oluc[Tn3+n2+(2—r)n+l.01u1(n4+2n +2n) /4] .

With partial or complete pivoting, 1=1 and ||éM||_ <

2 2

1.01us [n3+n%+n+1.02u(n+2n%+2n) /4] .
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7. REMARKS.

From §§3-5 we see that the error matrix arising in sparse
elimination depends on the fill-in occurring during elimina-
tion. In the band case we know a priori the structure of the
matrix. However, in the arbitrarily sparse case we must view
elimination in the context of optimal ordering, i.e. an or-
dering of the equations so that £ill-in is minimized. Given
a fixed ordering, our analysis here bounds the errors occur-

ring in the computation.
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